If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+15x-6.9=0
a = 2; b = 15; c = -6.9;
Δ = b2-4ac
Δ = 152-4·2·(-6.9)
Δ = 280.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{280.2}}{2*2}=\frac{-15-\sqrt{280.2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{280.2}}{2*2}=\frac{-15+\sqrt{280.2}}{4} $
| 8u-7u-u+2u=9 | | X+2+(x+4)=45 | | 8*x+9=5*x+4*(3*x-1) | | 19a-15a=16 | | x+82=101 | | 9x^2+61x-180=0 | | 3=−4/g−5 | | 3x+1=x^2+9 | | 3x-1=1+9x^2 | | 9x-16=10x+7 | | 1.3n=7.8 | | y-(-16)=3 | | 4w^2+4w=121 | | 6x+29=3x | | 3(x-3)+5=3x-2 | | r/2+12=14 | | p+12.95=44 | | b/2+12=14 | | 44=p-12.95 | | -7m+(-19)=37 | | 2800000-14x=840000 | | 8+26k=7k+10 | | 4x+20/3=12 | | 5x+(x-7)=-33-2x | | 75+3x=60+3x(2x-1) | | 5x^-4=16/125 | | t^2-18+81=0 | | 3+(2)/(5)x=-7 | | 5k-2k=1 | | 3+2/5x=-7 | | m(m−3)=0 | | 5x+2/5=5 |